Statistical Approach to DSR-PAV Test Improvement

Pavel Kriz, Katherine L. Sokol, Stephanie R. Sta. Maria, Demetrio Meskas

ISAP 2016 Symposium, Jackson, WY
July 19, 2016
Select Correct Glasses for Observation

“The observation is only as good as the measurement method”

Poor Test Resolution \Rightarrow Increased Cost

- Representation (Pass or Fail?)
- Feedstock management
- Production/quality control
- Logistics
Case for Action: DSR-PAV Is Too Variable

6163 kPa

2728 kPa

One Sample

SQC Data

Reproducibility, 40.2%

DSR-PAV, kPa

Gauge R&R

57%

60%

50%

40%

30%

20%

10%

0%

Unacceptable

Acceptable w/limits

Acceptable
Approach to DSR-PAV Variability Improvement

- Sample RTFO & PAV aging shown insignificant to DSR-PAV variability
- Study focused on DSR test improvement

Focus of this presentation

1. Standardize within T315
 - Sample preparation
 • Direct pour
 • Plates at 46 °C
 2. Trimming & gap setting
 • Plates at 46 °C
 3. Conditioning
 • Fixed cooling rate
 • Fixed wait time

 - Review setting in T315 for contributions to variability
 - Test variables in Statistical Design of Experiment
Statistical Design of Experiment (DoE)

- DoE = a powerful approach to maximize output at minimized effort
- A number of possibly interdependent factors or variables is studied
- The tests are strategically selected to represent each factor equally

Following variables were standardized prior to applying DoE:

- Large volume of QC sample PAV residue (PG 64-22, 25 °C test T.)
- Modern, Peltier cooled, base DSR instrument
- Sample aliquot, container size, oven preheat (temperature & time)
- Loading, trimming, gap temperature = 46 °C
- Trimming technique & tool
- Cooling rate to test temperature, isothermal time prior to test
DoE Factors and Levels

<table>
<thead>
<tr>
<th>Factor</th>
<th>+1</th>
<th>-1</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Geometry</td>
<td>Direct Transfer</td>
<td>Mold</td>
<td>Use of molds, 46 °C loading T</td>
</tr>
<tr>
<td>Geometry</td>
<td>8 mm PP*</td>
<td>25 mm PP*</td>
<td>Simple shear, trimming</td>
</tr>
<tr>
<td></td>
<td>2 mm gap</td>
<td>1 mm gap</td>
<td></td>
</tr>
<tr>
<td>Strain (%)</td>
<td>0.1</td>
<td>1</td>
<td>Linear viscoelasticity</td>
</tr>
<tr>
<td>Sample</td>
<td>Naphthenic</td>
<td>Waxy</td>
<td>Hardening tendency</td>
</tr>
<tr>
<td>Operator</td>
<td>New</td>
<td>Experienced</td>
<td>Experience</td>
</tr>
</tbody>
</table>

- 5 factors at 2 levels total 2^5 or 32 individual test settings
- Test matrix was generated and randomized using Minitab® software
- Each setting was repeated four times to calculate standard deviation
- Half design (16 settings) found to be statistically significant in identifying contributors to test variability

*Parallel plates
Each point represents a mean of half of the 64 total experiments.

Two geometries provide different results.
Strain = Major Factor Affecting Variability
• 8PP: modulus increases with strain likely due to edge effect
• Strain below 0.1 % desirable
High Test Strain & 8 mm Plates = Artifact of 1990s DSR Capability

1993 instrument min. torque

2008, 2014 instruments min. torque
Conclusions

1. DSR-PAV test is not able to distinguish quality easily
2. High test variability is partly driven by a test method
3. Lower strain & higher plate diameter-to-gap ratio is desirable

Recommendation:

1. Adopt 0.1% (or lower) strain and 25 mm PP for DSR-PAV test
2. Increase specification limit (e.g. to 6000 kPa) to ensure DSR (Original/RTFO) & BBR (m or S) are PG limiting specifications

Output:

• Improved asphalt production without impact to performance
Question & Comments?

pavel.kriz@esso.ca
Appendix
Lean Six Sigma

- Lean Six Sigma offers a powerful approach to continuous improvement

- DMAIC approach & numerous tools ranging from brainstorming & mind mapping to design of experiments & statistical analysis were utilized
1. Wait Time = silicon mold time standardized at 10 minutes
2. Gap Temperature = Sample load, gap setting, trimming done at 46 °C
3. Direct Transfer = molds discontinued, hot asphalt transferred to plates

Standardizing Sample Management

Gradual Improvement

Improvements Were Not Sustained
1. No significant difference among 3 instruments ($n > 30$ datapoints)
2. Minor increase (sample dependent) due to hardening
 • 10-25 min wait time increased modulus by $\sim 5\%$